
Linux Kernel Drivers for I2C-manageable

High Precision Power Source Based on

ISL22317 and PCA9536 Chips

Evgeniy Kravtsunov, Andrey Kuyan, Sergey Radchenko, Andrey Kozlov
Moscow Center of SPARC Technologies (ZAO MCST)

Moscow, Russia

{kravtsunov e, kuyan a, radch s, kozlov a}@mcst.ru

Abstract

Within the bounds of verification test bench development for multicore Elbrus microprocessor

ZAO MCST [1] designed precision single I2C-controlled power source based on Intersil ISL22317

digital control potentiometer and NXP PCA9536 4-bit SMBus I/O port chip. Power source was built

on four potentiomenters and one SMBus I/O port. Linux kernel driver for ISL22317, implemented

by the authors, allowed to support software-manageable power supply for test microprocessor and

to select a set of optimal supply voltages for test microprocessor cores precisely. As the solution

has been admitted to be useful for developers, it was decided to contribute implemented driver of

ISL22317 to linux kernel community. Suggested driver implementation is universal and it can turn

to be useful for other hardware devices built on ISL22317. Current article contains a generalized

scheme of power source, description of ISL22317 driver’s sysfs interfaces. The article reports on

the suggested algorithm of voltage supply management from userspace programms. Much attention

is payed to details of potentiometer driver implementaion. Readers attention is drawn to the driver

initialization and device instantiating methods for ISL22317 and peculiarities of interaction between

potentiometers and PCA9536 chip. Suggested software support makes possible to manage up to four

potentiometers bound to common I2C bus. Article also informs on algorithm of management up to 4

power sources bound to the same I2C bus. Proposed algorithm is based on I2C-bus multiplexing by

Linear LTC4306 chip. The source code of linux kernel driver of LTC4306 multiplexer, imlemented by

authors, is covered by GNU General Public License version 2 and is available in public git repository

along with ISL22317 driver. Current article reports on project in progress. In the conclusion authors

carry out drawbacks analyze of suggested power source design and propose a simplified variant of

I2C-manageable power source implementaion based on a single chip.

Index Terms: I2C-bus, ISL22317, LTC4306, Linux Kernel Driver.

I. INTRODUCTION

IIC (Inter-Integrated Circuit or I2C) is a serial bus which was invented and proposed for

support of integrated peripherals by Phillips at the beginning of 1980 [2]. Currently I2C is

one of de-facto standards of interaction with integrated peripherals in personal computers,

embedded systems and mobile devices. Integrated peripherals is a variety of sensors and

controls located on motherboard of personal computer or on board of embedded system. The

physical layer of I2C is a pair of wires: serial clock (SCL) wire and serial data (SDA) wire. A

rate of data exchange is determined by the frequency of SCL. Modern I2C controllers usually

support three frequency modes: 100 KHz, 400 KHz and 1MHz. Data exchange over I2C bus is

performed according to master-slave protocol. It means that data exchange over I2C bus with

up to 128 slave chips (sensors and controls) is managed by master-I2C controller. Every slave

chip owns unique 7-bit length address. I2C specification provides support for 10-bit addresses,



but currently a very few number of controllers support 10-bit addressing. Core support of I2C

protocol is implemented in linux kernel. Protocol is based on sequential writing of bytes to

bus and reading the reply bytes from bus. Exchange is initiated by controller, which is either

a standalone chip or an integrated part of SOC. Controller has a number of registers on board

that are software available. These registers are used by driver of controller (software driver of

controller is named adapter in linux kernel) for implementing software I2C interfaces. There

is a wide variety of I2C controllers by different vendors and each owns a set of registers that

differs from other controllers. Most popular controllers have their adapter implementations

in linux kernel. Every adapter realizes the unified set of I2C interfaces, which are declared

in linux kernel header file include/linux/i2c.h. Every I2C slave chip has SCL and

SDA pins for binding to I2C bus, vendor assigned 7-bit address that can not be updated from

software, and a set of registers available from software. Software available registers are used

by linux kernel driver of slave chip. To work with registers slave chip driver uses interface

functions declared in include/linux/i2c.h, that are implemented in adapter of I2C

controller. Slave chip driver has no information about internals of I2C controller and can use

only unified interface functions provided by adapter. As a rule, adapters implement a subset

of I2C protocol named SMBus. SMBus is a set of read/write interfaces listed in table 1. Using

TABLE I

SMBUS INTERFACES

Function Description

i2c_smbus_read_byte Reads one byte from the chip. Address of regis-

ter is not specified. Function is useful for chips

containing the only 8-bit register.

i2c_smbus_write_byte Writes one byte to the chip. Address of register

is not specified. Function is useful for chips con-

taining the only 8-bit register.

i2c_smbus_read_byte_data Reads one byte from specified register of chip.

i2c_smbus_write_byte_data Writes one byte to specified register of chip.

i2c_smbus_read_word_data Reads word (2 bytes) from specified register of

chip.

i2c_smbus_write_word_data Writes word (2 bytes) to specified register of chip.

i2c_smbus_read_block_data Reads block of data up to 64 bytes length from

specified register of chip.

i2c_smbus_write_block_data Writes block of data up to 64 bytes to specified

register of chip.

SMBus subset in slave chip driver is optimal from the point of view of driver portability. For

the majority of I2C slave chips information about vendor assigned address of I2C slave chip,

a set of registers and recommended operational conditions is open and available in datasheet.

Datasheet for ISL22317 is available here [3].

II. GENERALIZED SCHEME OF POWER SOURCE AND INTERACTION BETWEEN CHIPS

Authors were given a task of implementation software support of I2C-manageable power

source that is able to provide four different supply voltage values on different outputs. Power

source was constructed by engineers of ZAO MCST. Power source is built on four I2C-

managable potentiometers ISL22317. In conformity with technical documentation[3] ISL22317

chip realizes the following functionalities:

1) supply voltage management in the range of [0; Vcc] by setting the position of wiper

(from 0 till 127 in conditional values);



2) storing the default wiper position in EEPROM;

3) ability to manage precision regimes ;

4) support of low power consumpion state of chip and ability to move chip from active

to low power state and back;

5) support of two modes of chip: potentiometer and resistor, and ability to switch between

them.

According to datasheet ISL22317 chip can have one of two addresses on bus: either 0x2a or

0x28. Value of address is determined by the logic value at pin A1 of chip: if A1 is true - the

address is 0x2a, else the address is 0x28. Thereby only two ISL22317 chips can be bound

to the same I2C bus. To support four chips on the same bus a decision was taken to use 4-bit

PCA9536 SMBus I/O chip for switching logic value 1 between A1 pins of ISL22317 chips.

PCA9536 realizes 4 gpio pins that can be managed through I2C (Fig1.). Switching between

Fig. 1. Generalized scheme of power source

ISL22317 chips is performed by setting ”1” to the corresponding ”addr” output of PCA9536

chip. Setting is carried out through interface of PCA9536 I2C slave chip driver. Thereby from

the point of view of kernel, power source looks like two slave chips on the same I2C bus:

one PCA9536 chip with address 0x41 [4], and one ISL22317 chip with address 0x2a. From

the software, switching between potentiometers ISL22317 is performed in three steps:

1) setting the ”1” logic value in the corresponding ”addr” output pin of PCA9536 chip;

2) reinitialization of data structures in memory that describe ISL22317 slave chip;

3) writing the value of wiper position in conditional values to ISL22317.

PCA9536 slave chip driver is implemented in linux kernel (drivers/gpio/pca953x.c).

Outputs of PCA9536 are managed through sysfs interfaces, that are realized in driver accord-

ing to gpiolib convention [5]. Thereby to provide support for power source authors had to

implement only ISL22317 slave chip driver. Details of potentiometer driver implementation

are considered below.

III. TEST BENCH, INTERACTION WITH I2C CONTROLLER

Figure 2 illustrates the test bench (installation) that was used for testing power source.

As control host was used an x86 machine with IntelPIIX4 [6] south bridge chip on board.



IntelPIIX4 chip contains embedded I2C controller, that was used by authors for managing I2C

bus. Power source is located on the prototype of Elbrus computer’s motherboard. IntelPIIX4

was connected to power source by two wires. Control host was running linux with latest kernel

Fig. 2. Scheme of test bench

built with enabled support of I2C (CONFIG_I2C), IntelPIIX4 (CONFIG_I2C_PIIX4),

PCA9536 (CONFIG_GPIO_PCA953X) and ISL22317 (CONFIG_ISL22317). The goal

of experiment was to select optimal values of voltage supply for Elbrus microprocessors.

IV. DRIVER INTERNALS

Consider some details of ISL22317 slave chip driver implementation. Source code of

ISL22317 driver is available in linux kernel 3.6 tree in public git repository git.mcst.ru.

Driver is implemented as a kernel module, that can be enabled by setting CONFIG_ISL22317

config option to ”m”. Driver implements a set of read/write functions for accessing registers

of potentiometer. Realization of sysfs interfaces to userspace is based on these readwrite

functions. Read/write functions use only two SMBus interfaces from table 1: i2c_smbus_

read_byte_data and i2c_smbus_write_byte_data. It is enough because all the

registers of potentiometer are 8-bit ones according to datasheet. Driver implements isl22317

_probe function that is registered as probe callback for driver model while loading module

isl22317.ko. Function isl22317_probe carries out the following initialization steps:

1) checks the adapter functionality for support i2c_smbus_readwrite_byte_data

interfaces;

2) allocates internal structure isl22317_data that describers mode, state and registers

of ISL22317 chip;

3) initializes chip by default values using smbus interfaces;

4) creates a group of sysfs files for managing ISL22317 from userspace.

Callback function probe for driver is called on module loading only when the device is

instantiated. There are 4 methods suggested by linux kernel driver model that can be used for

instantiating devices. The most popular method based on autodetection of bus clients can not

be used for ISL22317. This is because of two reasons: ISL22317 does not have registers where

vendor id and revision id of chip are stored, and ISL22317 doesn’t support SMBUS_QUICK

command, that is used by I2C core while probing an I2C bus for certain devices. Instead

autodetection authors have tested two alternative methods proposed by I2C core: 1) declaring

the I2C devices by bus number; 2) instantiating the devices explicitly. Both methods are



appropriate for ISL22317. First method can be implemented by initializing the array of struct

i2c_board_infowhich is registered by calling i2c_register_board_info function

during the kernel init process. This method is preferable for linux kernels for embedded or

mobile devices. Second method can be implemented by calling i2c_new_device() for

initialized i2c_board_info structure. Function i2c_new_device() can be called from

the slave chip driver initialization path. Second method is appropriate when more then one

adapter is registered in the system and number of I2C adapter is unknown in advance. Authors

used first method on the control host of test bench (Fig. 2).

V. SYSFS INTERFACES FOR ISL22317 POTENTIOMETER

Clients for I2C-controlled potentiometer weren’t found in linux kernel by authors while

developing driver, therefore original sysfs interface for ISL22317 was developed according to

linux kernel driver model and sysfs standard [7]. But now driver for AD525x digital poten-

tiometer in latest versions of kernel, so authors below will be demonstrated a comparison of the

ISL22317 an AD525x interfaces. Sysfs interfaces [8] for I2C core subsystem can be created by

using i2c-dev kernel module [9]. While loading i2c-dev module detects registered I2C

adapters by scanning the list of adapters. If adapters were found, i2c-dev creates adapter

name folder in /sys/class/i2c-dev. Folder adapter name contains nested folders

which correspond to slave chips bound to the I2C bus, controlled by adapter. On the control

host (figure 2) of test bench folder i2c-0 was created by i2c-dev module for IntelPIIX4

I2C controller. The following nested folders were created in i2c-0: devices/0-0041 - for

PCA9536 slave chip and devices/0-002a-for ISL22317 slave chip. While loading mod-

ules pca953x.ko and isl22317.ko, folders 0-0041 and 0-002a are filling with sets

of files. As for isl22317.ko module - it’s loading causes creating following file structure

(Fig.3). All listed files are available for reading and writing, except reinit_chip, which is

available only for writing. Writing ”1” value to reinit_chip file causes reinitialization of

i2c_client structure that describes ISL22317. File wiper contains current decimal value

of wiper position in conditional values (from 0 till 127). Writing to wiper file causes to

setting corresponding voltage on the ISL22317 output. Absolute value of voltage depends on

the peculiarities of power source implementation, therefore power source should be calibrated

before using. File ivalue contains the initial value of wiper position that is to be set by

default on power on. This value is stored in EEPROM on board of ISL22317 when the

power is off. Initial value can be updated by writing updated value to ivalue file. File

precision having only two valid contents: 1 or 0, allows to manage precision regimes of

ISL22317. Writing value ”1” to precision file causes switching on the precision regime,

value ”0” switched off precision regime. File mode is used for switching ISL22317 chip

from ”potentiometer” mode (corresponds value ”1”) to ”resistor” mode (corresponds value

”0”). File power_state is used for moving chip from active state (value ”0”) to low power

consumption state (value ”0”) and back. While loading module pca953x.ko a symbolic

link gpiochip0 appears in /sys/class/i2c-dev/i2c-0/devices/1-0041 folder.

This is a link to the path in sysfs where files for gpio are placed according to gpiolib convention

[5]. For example, for setting ”1” to adr0 output of PCA9536 (Fig. 1) and values of ”0” to

other outputs addr1, addr2, addr3 the following actions should be carried out (Tab.2).

VI. ALGORITHM OF MANAGING POWER SOURCE FROM USERSPACE

Linux kernel built with enabled support of: I2C (CONFIG_I2C), IntelPIIX4 (CONFIG_

I2C_PIIX4), ISL22317 (CONFIG_ISL22317), PCA9536 (CONFIG_GPIO_PCA953X),



/sys

./class

./i2c-dev

./i2c-0

./devices

./0-002a

./reinit_chip

./wiper

./ivalue

./precision

./mode

./power_state

Fig. 3. File structure for ISL22317 interface

TABLE II

EXAMPLE OF USING PCA9536 THROUGH SYSFS INTERFACE

Action Corresponding shell commands

Export all gpio pins of PCA9536: $ cd /sys/class/i2c-dev/i2c-0

$ echo "0" > ./devices/0-0041/export

$ echo "1" > ./devices/0-0041/export

$ echo "2" > ./devices/0-0041/export

$ echo "3" > ./devices/0-0041/export

Set the direction of all gpio pins to ”output”: $ cd /sys/class/i2c-dev/i2c-0

$ echo "out" > ./devices/0-0041/gpio0/direction

$ echo "out" > ./devices/0-0041/gpio1/direction

$ echo "out" > ./devices/0-0041/gpio2/direction

$ echo "out" > ./devices/0-0041/gpio3/direction

Set ”1” to gpio0 output and values of ”0” $ cd /sys/class/i2c-dev/i2c-0

$ echo "1" > ./devices/0-0041/gpio0/value

$ echo "0" > ./devices/0-0041/gpio1/value

$ echo "0" > ./devices/0-0041/gpio2/value

$ echo "0" > ./devices/0-0041/gpio3/value

I2C-DEV (CONFIG_I2C_CHARDEV), SYSFS (CONFIG_SYSFS) allows to use the following

algorithm for power source management from userspace (Tab. 3). For updating output voltage

on potentiometers number 1, 2, 3 steps 3 and 4 should be repeated with setting setting the

”1” to corresponding gpio output and ”0” to other gpio outputs of PCA9536 chip. ISL22317

driver interfaces allow also to perform the following optional actions (Tab. 4). While switching

to low power state driver saves the context of ISL22317 registers to memory and restores

registers from memory during switching back to active state.



TABLE III

ALGORITHM OF POWER SOURCE MANAGMENT FROM USERSPACE

Action Corresponding shell commands

Load necessary modules: $ modprobe i2c-dev

$ modprobe pca953x

$ modprobe isl22317

Export gpio pins and set their directions to ”output”: $ cd /sys/class/i2c-dev/i2c-0/devices

$ echo "0" > ./0-0041/export

$ echo "1" > ./0-0041/export

$ echo "2" > ./0-0041/export

$ echo "3" > ./0-0041/export

$ echo "out" > ./0-0041/gpio0/direction

$ echo "out" > ./0-0041/gpio1/direction

$ echo "out" > ./0-0041/gpio2/direction

$ echo "out" > ./0-0041/gpio3/direction

Select and reinitialize potentiometer: $ cd /sys/class/i2c-dev/i2c-0

$ echo "1" > ./devices/0-0041/gpio0/value

$ echo "0" > ./devices/0-0041/gpio1/value

$ echo "0" > ./devices/0-0041/gpio2/value

$ echo "1" > ./devices/0-002a/reinit_chip

Set the value of wiper position X : $ cd /sys/class/i2c-dev/i2c-0

(X belongs to the range [0,127]) $ echo X > ./devices/0-002a/wiper

TABLE IV

ALGORITHM OF UPDATING OUTPUT VOLTAGE ON POTENTIOMETRS USING SYSFS INTARFACE

Action Corresponding shell commands

Read the initial value of wiper position from EEPROM: $ cd /sys/class/i2c-dev/i2c-0

$ cat ./devices/0-002a/ivalue

Write the initial value X of wiper position to EEPROM: $ cd /sys/class/i2c-dev/i2c-0

$ echo x > ./devices/0-002a/ivalue

Read current wiper position: $ cd /sys/class/i2c-dev

$ cat ./i2c-0/devices/0-002a/wiper

Switch to ”precision” regime and back: $ cd /sys/class/i2c-dev/i2c-0

$ echo 1 > ./devices/0-002a/precision

$ echo 0 > ./devices/0-002a/precision

Switch to ”resistor” mode and back to $ cd /sys/class/i2c-dev/i2c-0

”potentiometer” mode: $ echo 0 > ./devices/0-002a/mode

$ echo 1 > ./devices/0-002a/mode

Switch from ”active” state to ”low power” state and back: $ cd /sys/class/i2c-dev/i2c-0

$ echo 1 > ./devices/0-002a/power_state

$ echo 0 > ./devices/0-002a/power_state

VII. MANAGING SEVERAL POWER SOURCES BOUND TO THE SAME I2C BUS BY USING

MULTIPLEXER LINEAR LTC4306

During the experiments with test bench authors have encountered additional problem. One

of target motherboards contained four power sources instead of one and I2C multiplexer chip

Linear LTC4306 [10]. Multiplexer allows to transmit I2C data from upstream bus to one

of downstream busses (Fig. 3). Downstream bus can be selected by I2C commands from

upstream bus as LTC4306 itself is I2C slave chip. Upstream bus was the bus that connects

master (IntelPIIX4) and target board, every downstream bus connected one power source

based on ISL22317 and PCA9536 chips with multiplexer. Problem has been successfully

solved by authors by implementing linux kernel driver for LTC4306. Source code of driver

is available in public git repository git.mcst.ru along with ISL22317 source code.



Fig. 4. Using LTC4306 multiplexer for accessing 4 power sources on target board

VIII. SYSFS INTERFACE FOR AD525X

The ad525x_dpot driver allows to work with the immediate resistance settings as well

as update the saved startup settings. Access to the factory programmed tolerance is also

provided, but interpretation of this settings is required by the end application according to the

specific part in use. Each dpot device will have a set of eeprom, rdac, and tolerance

/sys/bus/i2c/devices

./eeprom0

./rdac0

./tolerance0

./0-0022 

./0-0027

./0-002f

Fig. 5. File structure of AD525x interface

files (Fig.5). How many depends on the actual part you have, as will the range of allowed

values. The eeprom files are used to program the startup value of the device. The rdac files

are used to program the immediate value of the device. The tolerance files are the read-only

factory programmed tolerance settings and may vary greatly on a part-by-part basis. For exact

interpretation of this field, please consult the datasheet for your part. This is presented as a

hex file for easier parsing. The above description of both interfaces indicates the similarity in

the implementation of the drivers. This is a consequence of following sysfs standard and I2C-

core interface. The difference is that the support of devices functionality is implemented in



TABLE V

ALGORITHM OF UPDATING OUTPUT VOLTAGE ON POTENTIOMETRS USING SYSFS INTARFACE

Action Corresponding shell commands

Locate the device in your sysfs tree.This is probably $ ls /sys/bus/i2c/devices/

easiest by going into 032 the common I2C directory and 0-0022 0-0027 0-002f

locating the device by the I2C slave address:

So assuming the device in question is on the first $ ls /sys/bus/i2c/devices/0-002f/

I2C-bus and has the slave 038 address of 0x2f, eeprom0 rdac0 tolerance0

we descend (unrelated sysfs entries have been trimmed).

You can use simple reads/writes to access these files: $ cd /sys/bus/i2c/devices/0-002f/

$ cat eeprom0

0

$ echo 10 > eeprom0

$ cat eeprom0

$ cat rdac0

5

$ echo 3 > rdac0

$ cat rdac0

3

accordance with techical documentation, which describe internal structure of devices. Several

recommendations for driver development can be given by authors: driver should strongly

follow i2c-core interfaces and sysfs standard, particular realisation of sysfs interface should

be inplemented according to datasheet and take into account the subsequent usage of the

device. Below will be shown why following these guidelines will allow to develop cross-

platform Linux kernel driver.

IX. DRIVER AS A CROSS-PLATFORM SOFTWARE

Process of Linux kernel driver development, which has been described, demonstrates the

general scheme of interaction user space programs with hardware through several kernel

layers. The way suggested by authors may be used as an example in design of new drivers,

because there are strong similarities between drivers for I2C-devices. As you can see (Fig.6),

developed drivers are situated in architecture independent layer of Linux kernel, so there are

possibilities to use it on an machine with any microprocessor architecture running Linux.

Adapter is placed on architecture dependent layer in the sense that hardware realisation of

I2C-controller hinges on manufacturer. Each hardware realization of controller should have

its own implementation of driver in kernel. Adapter should support all necessary i2c-core

interfaces to interract with I2C-client’s driver. According to driver’s place in kernel, it can

be considered as a cross-platform software. Authors hope, that the above description will

be useful for novice developers, who want to start write drivers to use it in their embeded

systems or peripheral devices and send patches to community, and for all people working

with I2C kernel drivers.

X. NEXT MILESTONE FOR DEVELOPMENT - POWER SOURCE BASED ON LINEAR

LTC2970 CHIP

Power source described in current article provided effective solution for the task of experi-

mental selecting voltages for processor cores of mutlicore microprocessor. Precision mode of

ISL22317 is a significant advantage of considered power source. But for the tasks of runtime

power management more effective and fast solution can be found. Next step in designing of

power sources is to build a power source on a single chip Linear LTC2970 [11]. Engineers



sysfssysfs

u
se

r 
sp

ac
e

k
er

n
el

 s
p

ac
e

ar
ch

 d
ep

ar
ch

 i
n

d
ep

driver i2c-core

user space program

h
ar

d
w

ar
e

i2c-clienti2c-controller

adapter (i2c-controller driver)
x
fe

r

re
ad

st
o
re

Fig. 6. Generalized scheme of interaction between user space program and hardware

of ZAO MCST are working on such new power source. As for authors - they are currently

developing corresponding driver.

REFERENCES

[1] http://www.mcst.ru/

[2] http://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git Documentation/i2c/i2c-protocol

[3] http://www.intersil.com/content/dam/Intersil/documents/fn69/fn6912.pdf

[4] http://www.nxp.com/documents/data sheet/PCA9536.pdf

[5] http://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git Documentation/gpio.txt

[6] http://www.intel.com/assets/pdf/specupdate/297738.pdf

[7] http://www.kernel.org/doc/Documentation/hwmon/sysfs-interface

[8] J. Corbet, A. Rubini, G. Kroah-Hartman , ”Linux Device Drivers,” O’Reilly, 3rd Edition, pp. 375-383, 2005.

[9] http://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git Documentation/i2c/dev-interface

[10] http://cds.linear.com/docs/Datasheet/4306.pdf



[11] http://cds.linear.com/docs/Datasheet/29067f.pdf


