Разработка корпуса многоядерного процессора на основе керамической коммутационной платы

> Игнат Николаевич Бычков ОАО «ИНЭУМ им. И.С. Брука»

Содержание

- Введение
- Конструкция микросхемы
- Выводы корпуса
- Назначение выводов корпуса
- Подключение процессора (МПП)
- Потери в уровне сигналов
- Значимые потери в диэлектрике
- Материалы платы корпуса
- Сравнение структуры слоев
- Связи в корпусе процессора
- Нормы для платы корпуса
- Трассировка памяти
- Заключение

Сложность совместного проектирования периферии кристалла, корпуса процессора и вычислительного модуля на его основе постоянно растет. Для такого совместного проектирования необходим учет применяемых технологий сборки микросхем и изготовления корпусов.

При сборке высокопроизводительных процессоров технология *Flip Chip* применяется уже более десяти лет, тогда как технология *3D-TSV* имеет существенные ограничения, а технология *monolithic 3D IC* пока далека до внедрения.

Garrou P. Will monolithic 3D IC technology become a real competitor to 3DIC with TSV? // Solid State Technology./ January 2014. V. 57. № 1. P. 9.

Конструкция микросхемы

Выводы корпуса

Выбран шарик диаметром 0.6 мм, который достаточен для установки второго уровня керамических конденсаторов высотой 0.3 мм.

Micropearl SOL // URL: <u>http://www.sekisui.co.jp/itmg/eng/</u>

Назначение выводов корпуса

Введены зоны под интерфейсы и питание.

Бычков И.Н., Рябцев Ю.С., Юрлин С.В. Варианты распределенной сети питания для многоядерного микропроцессора // Вопросы радиоэлектроники, 2013. ОАО "ИНЭУМ им. И.С. Брука"

Подключение процессора (МПП)

Потери в уровне сигналов

Волновое сопротивление трассы = 100 Ом, ширина трассы = 0,158 мм на фольге толщиной 18 мкм.

ОАО "ИНЭУМ им. И.С. Брука"

Значимые потери в диэлектрике

Волновое сопротивление трассы = 100 Ом, ширина трассы ~ 0,2 мм на фольге толщиной 18 мкм.

Материалы платы корпуса

Материал			нтсс	LTCC			Полимерный материал		
Кодовое название			A440	GL771	GL773	GL570	FR4	BT	GX13
Теплопроводность Вт/(м·		Вт/(м∙К)	14	2	2	2.8	0.2	0.2	-
Коэффициент теплового расширения (~ 400 °C)		10 ⁻⁶ K ⁻¹	7,1	12,3	11,7	3,4	12~14	13~16	100
Сопротивление слоя металлизации		мОм / квадрат	10~12	3,0	3,0	3,0	2,0	2,0	2,0
Диэлектри- ческая постоянная	1 МГц	-	9,8	5,3	5.7	5.6	5.5	4.7	3.8
	2 ГГц	-	-	5,2	5,8	5.7	-	-	-
	10 ГГц	-	-	5,2	5,8	5.6	-	-	-
	60 ГГц	-	-	5,3	5,8	5.6	-	-	-
Тангенс угла диэлектри- ческих потерь	1 МГц	10 ⁻⁴	24	8	5	3	200	100	170
	2 ГГц	10 ⁻⁴	-	35	23	7	-	-	-
	10 ГГц	10 -4	-	38	25	12	-	-	-
	60 ГГц	10-4	-	34	33	25	-	-	-
Предел прочности при изгибе		МПа	400	170	280	200	430	580	90
Модуль Юнга эластичности		ГПа	310	74	95	128	-	23	3.5

ОАО "ИНЭУМ им. И.С. Брука"

Выбран *GL771*, *NRE* выше чем у полимерных материалов.

Сравнение структуры слоев

Полимеры структурой 4-2-4

У полимерных плат корпуса существенное ограничение по количеству слоев. Возможна лишь структура 5-2-5 (12 слоев).

Ceramic Packages for Large Scale Integration (LSI) Devices, Flip Chip HITCE® LTCC // URL:

<u>http://global.kyocera.com/prdct/semicon/semi/lsi_pkg/index.html</u> ОАО "ИНЭУМ им. И.С. Брука"

Связи в корпусе процессора

корпусе и необходимость 28 слоев платы корпуса.

Нормы для платы корпуса

Процесс СС050, единица измерения - мкм. Выделяют минимальные нормы для зоны кристалла. Нормы вне зоны кристалла отмечены в скобках.

Трассировка памяти

Увеличение шага между переходными отверстиями сигнальных трасс в области кристалла.

1) Подключение питания с минимальным сопротивл.

2) Трассировка байт с зазорами или на разл. слоях.

Заключение

- Выбрана эффективная конструкция микросхемы
- Реализовано назначение сигналов выводам микросхемы
- Выбран материал GL771 для керамической платы корпуса
- Использована технология СС050 для реализации платы корпуса
- Реализована трассировка платы корпуса
- Поведено моделирование системы кристалл корпус-плата
- Получены опытные образцы микросхем для проведения испытаний