TPYIAbI MOTU. — 2012. — Tom 4, Ne 1 Frolov P. V. et al. 1

YK 004.052.42

P. V. Frolov, V. N. Kutsevol, A. N. Meshkov, N. Yu. Polyakov, M. P. Ryzhov

AO «MCST»
PAO «INEUM»

Direct Memory Access components verification system

A method of direct memory access subsystem verification used for Elbrus series micro-
processors has been described. A peripheral controller imitator has been developed in order
to reduce verification overhead. The model of imitator has been included into the functional
machine simulator. A pseudorandom test generator for verification of the direct memory
access subsystem has been based on the simulator.

KurodeBbie ciioBa: system verification, functional model, direct memory access, pseu-
dorandom test generation.

Direct Memory Access components verification system

1. Introduction

Modern computer systems require very intensive data exchange between the peripheral de-
vices and the random-access memory. In the most cases this exchange is performed by the direct
memory access (DMA) subsystem. The increasing demands for the performance of the subsys-
tem lead to an increase in its complexity, therefore requiring development of effective approaches
to DMA subsystem verification [1,2].

This article is based on a result of a comprehensive project than combined implementation
of a there co-designed verification techniques based on the consecutive investigation of the DMA
subsystem employing one the three models: 1) a functional model written in C++ that corre-
sponds to behaviour of the subsystem in the environment determined by a real computer system
configuration, 2) RTL model in Verilog and 3) FPGA-based prototype. This article describes the
first method that enables verifying correctness of the design at an early stage of the verification
and eliminate a large quantity of bugs using simple tests.

The most important problem that significantly affects the quality of the subsystem verifi-
cation is the exhaustiveness of the representation of the external devices connected to it and
input vectors they generate. In this case, the problem has been solved by introducing a de-
vice imitating a peripheral controller and capable of generating a comprehensive range of DMA
subsystem interaction patterns into the functional model. The basic aspects of DMA imitator
implementation are presented in the second section.

The exhaustiveness of the subsystem in question verification is achieved with a test generator
allowing to provide necessary inputs using the imitator. The generator produces a test program
that performs the DMA imitator scenarios setup for all of its agents, launches their concurrent
execution, provides memory access by the CPU cores during the DMA access scenarios execution
and checks the final memory state. The generator operation principles are described in the fourth
section of the paper.

The generation of final memory state checking code requires a golden model of the memory
subsystem being available for the generator. A functional model library that will be described
in the third section has been reused from previous projects in order to fulfill this requirement.

2. Peripheral device imitator

Considering the computer system containing the subsystem (fig. 1a) in question it should be
noted that difficulties connected to precise modeling of the southbridge devices caused by the
usage of the complex device drivers can be avoided via imitating behavior of the real DM A agents.

2 TPYIABlI MOTU. — 2012. — Tom 4, Ne 1

RAM RAM
A
— CPU - CPU

i -Northbridge - - - - S ;- - Northbridge ---g--»
! 1 1 :
1 1
Core 0 * Memory controllers | | Core 0 : Memory controllers | !
' i i d
| : | 1
Core 1 T Interprocessor links |, Core 1 : Interprocessor links |1

1 1
! 1 I 1
1 | 1
Commutator : : Commutator : :
- Host controller : : Host controller :

1
5 : : !
. : ! i
Core N i : Core N 1 H

| : !
: 10 link controller : : DMA imitator E

1
b - . . :
—— Southbridge
Peripheral controller 1 Y
Commutator <> 10 link controller
Peripheral controller N el
a). b).

Figure 1. The structure of the computer systems: a).Real configuration b). Model configuration (integra-
tion of the DMA imitator into the northbridge)

A masked DMA copy operation has been used as a basic operation that allows to implement the
significant number of the direct memory access scenarios. In order to achieve a high-speed test
execution, the imitator is integrated into to IO link between the northbridge and the chipset
(southbridge, fig. 1b). The positioning of the imitator as a standard IO controller allows to apply
this scheme to any modern Elbrus series processor.

The imitator represents a simplified version of the southbridge. It includes adjustable number
of identical agents (fig. 3), each capable of working in normal or table modes. In the table mode
the memory access scenario specification is simplified by providing them via tables placed in the
memory.

Agent is capable of the following operations:

e copying data from one area of the memory to another in normal and table modes,
e reading copy operation parameters from memory,

e data transformation.

The imitator is implemented as a PCI-compatible device, each agent is created as an indepen-
dent device that is controlled by a common bus via load and store operations to the configuration
space. Agents can perform an exchange with the memory using standard read and write packets.
The commutation between the agents is performed by the DMA Switch module.

Also the imitator includes:

e EEPROM agent for BIOS loading,
e PCIIO memory space agent for PCIIO memory imitation,

e PCIMem agent for video memory imitation.

TPYIAbI MOTU. — 2012. — Tom 4, Ne 1 Frolov P. V. et al. 3

store_data A store_conf
load_data load_conf
— Imitator
4
DMA Switch
)) 3
dev O dev 1 dev N
DMA DMA DMA
agent 0 agent 1 agent N

Figure 2. The structure of the DMA-imitator

The structure of the DMA-agent is shown at this fig. 3. ConfigResigters module is an
array of configuration space registers containing setup operation modes, base addresses and
other parameters. In the normal mode the addresses are written to the ConfigRegisters are
used to access the memory. In the table mode the TMHandler module uses written address to
fetch and process the table with address of reads and writes. The Format module is responsible
for masking the data and correct merging of data in the table mode. The DMAEngine module
implemented as a FIFO buffer with data performs loads and stores of the data using the DMA
write and DMA read functions provided by the functional model.

Config Registers

TMHandler Format

DMA Engine

store from chipset | load to chipset

Figure 3. The DMA-agent

The imitator described above decreases 10-link operations latency and peripheral device
initial configuration time and increases the 10-link data rate. This agents create more intensive

4 TPYIABlI MOTU. — 2012. — Tom 4, Ne 1

loads in comparison with the southbridge RTL model. But it is also necessary to verify the CPU
with the true IO-link latency, speed and other features (virtual channels, interrupts, data rate
reconfiguration, etc.). For these purposes the imitator can be configured as shown in fig. 4.

to/from CPU
10 link controller olg port
v A
slave to slave to
master master
converter converter
— Imitator } 1‘
DMA Switch
dev 0 dev 1 dev N dev N+2 dev N+1
boot
DMA DMA El\gﬁt interrupt PCIIO T
agent O agent 1 gN agent PCIMem
PCICfg

Figure 4. The I0-link imitator

The I0-link imitator is connected to CPU IO-link. The IO-link imitator contains the same
switch and agents, but also has the following modules:

e 1O-link controller,

e two master to slave converters in order to connect the switch as a master to the I0-link
controller,

e special filter for PCICfg requests to the IO-link controller configuration registers,

e [0 device interrupts imitator.

3. Functional model of the DMA imitator

The approach to the problem is based on presenting the direct memory access as two indepen-
dent modules: the simulator, that imitates the work the computer system architecture objects
that are directly employed in the process, and a test generator that provides the modes and
parameters for the direct memory access, sets up the logic of the these objects and controls the
correctness of the outcome (fig. 5). The structural and functional independence of these modules
significantly increases the flexibility of the system in such aspects as content and interaction of
objects under study, the spectrum of generated inputs and results checking.

The configuration of the simulator that has been developed contains four processor each one
containing several general-purpose cores and a northbridge, the southbridge and an imitator
that consists of an array of peripheral devices and their interfaces [3]. According to the second
section the communications of the imitator and the northbridge are performed by the functions
of the programming model described in the PCI standard.

The simulator works according to interpretation principle. In each virtual tick execution of
one command in each of the processor cores is performed. In addition, different asynchronous
actions in respect to the commands execution actions such as counter and timer ticks and
external interrupt handling are also performed during a single tick.

TPYIAbI MOTU. — 2012. — Tom 4, Ne 1 Frolov P. V. et al. 5

In order to enable the communication of the simulator with the generator it has been decided
to implement a working cycle of the simulator available through a set of library functions.

—— Simulator

Core 0

Core 1 Northbridge Imitator

A

Core N < >

Y
— CPUO Generator interface
— CPU 3
callback step ()
—— Generator 2 2
Memory model Generator core
Library control and
Static Code area communication
initialization P <>
code ‘ Code generators |
Data area ‘ Data generators |

Figure 5. Components of the DMA subsystem functional model

4. Test generator

The generator contains the static initialization code, the memory model and the core of the
generator. The initialization code is a sequence of instructions that performs the initial setup of
the hardware performed by the test.

The core of the generator contains the library control and communication module as well as
the code and data generators [5]. The library control and communication module is responsible
for interaction with the simulator. It invokes the step() function that implements execution
of instructions of the modeled hardware and the analysis the result of its execution. The code
generator writes the code that controls the operation of each of the DMA-agents and the data
generator writes the blocks of the data to be send. The flexibility of the DMA-imitator param-
eterisation is fully supported by the pseudorandom test generator that sets up pseudorandom
parameters for the DM A-exchange such as addresses of the memory buffers, ranges of the DMA-
packet sizes as well as different transfer modes.

Both static initialization code and dynamically generated code is placed into the code area
that is one of the components of the memory model. When code fetch takes place during the
program execution the requests are directed by the callback function to the code area of the
generator. The data area that is another memory model component is handled in a similar
manner. The requests for the data — the loads and stores can be initiated by both the CPU
cores and the DMA-agents. All of the requests are redirected to the data structure containing
the array dynamically allocated by the data generator.

The step-by-step algorithm of the simulator main modules interaction with the generator is
presented in the fig. 6.

The general scenario of working with the DMA-imitators has the following outline: the basic

6 TPYIABlI MOTU. — 2012. — Tom 4, Ne 1

Memory ranges

selection
‘L Model (including
Library initialization DMA-imitator)
startup
1]
¥

Invoking step()

No

Is all the data

callback function required for the

step avaliable?
Memory access
request decoding Yes
I
Code/data Instruction
genration execution
Test termination
code found?
Writing test file. Exit
Generator Model

Figure 6. The control flow of the generator that employs DMA subsystem functional model

system initialization, the initialization of the DMA buffers with the data designated for trans-
mission, the configuration of the DMA-imitator and the launch of the DMA-exchange. Such
system parameters as number of processors and available physical address ranges can be varied
in a random way to create different DMA routing scenarios. The system initialization procedure
can also turn on input/output memory management unit (IOMMU) and fill translation table
with random entries.

The initialization of the DMA buffers is performed by the CPU cores causing the data for
the transfer to be located at different levels of the coherent memory hierarchy that includes
both caches and memory [6]. During the configuration of the imitator the specification of the
operation mode and the base address of the memory to be processed are determined. The DMA
exchange is performed while the CPU cores access memory regions that intersect with the DMA
buffers. After the completion of the exchange the reference values are generated based on the
contents of the memory final state. These values are used to perform self-checking during test
execution on the target model or device.

Any test produced by the generator can be executed on either the RTL model, the simulator
or the FPGA-based prototype without any additional test modification. The test generator
provides an opportunity to use any device connected to real southbridge instead of the DMA
imitator such an ethernet controller as a source of DMA-packets.

5. Conclusion

In this study the problem of the direct memory subsystem verification when applied to
“Elbrus” series microprocessors has been investigated. Employment of the test generator built
using the approach described in this paper allowed to find 45 bugs in three different “Elbrus”
series microprocessors: 24 in a single-cores low-power CPU and no cache coherence support, 16 in
a eight-core CPU supporting up to 32 core per ccNUMA system with coherent DMA and 5 in the

TPYIAbI MOTU. — 2012. — Tom 4, Ne 1 Frolov P. V. et al. 7

next generation eight-core CPU with ccNUMA and updated coherence protocol. These bugs were
found in spite of rigorous stand-alone verification of the DMA subsystem modules performed
during the generator development. In order to enable the execution of sufficient number of
tests and speeding up the development of the test generators and bug analysis a method of
verification based on the replacement of DMA-capable real devices with imitator device with a
simple programming interface and ability to completely consume the bandwidth of the direct
memory access data path was introduced. The application of the developed method enables
to achieve the operation modes of the DMA subsystem analogous to the real-world ones. The
unification of the DMA imitator interface for the RTL-model, the computer complex simulator
and the FPGA-based prototype allows to increase the pace of DMA subsystem tests generator
development.

References

1. Grosso, M. et al. Functional Verification of DMA Controllers - Journal of Electronic Testing;:
Theory and Applications Volume 27 Issue 4, August 2011, Pages 505-516.

2. A K. Kim, M.S.Mikhailov, V.M.Fel’dman. Podsistema vvoda-vyvoda dlya sistem na kristalle
“MCST-4R” i “Elbrus-S” na osnove mikroskhemy kontrollera periferiinykh interfeisov. —
Voprosy radioelektroniki, seriya EVT, vypusk 3, 2012.

3. Gurin K.L., Meshkov A.N., Sergin A.V., Yakusheva M.A. Razvitie modeli podsistemy pamy-
ati vychislitel'nykh kompleksov serii «El’bruss. — Voprosy radioelektroniki, seriya EV'T, 2010,
vypusk 3.

4. Nohl, A., Braun, G., Schkiebusch, O., Leupers, R., Meyr, H., A Universal Technique for Fast
and Flexible Instruction-Set Architecture Simulation, DAC2002, June 10-14, New Orleans,
Louisiana, USA, 2002.

5. Frolov P.V. Generatsiya sluchainykh testov sistemnogo urovnya dlya mikroprotsessorov s
arkhitekturoi «El’brus». — Voprosy radioelektroniki, seriya EVT, 2014, vypusk 3.

6. Isaev M.V., Polyakov N.Yu. Primenenie kesha i spravochnika DMA-obmenov v NUMA-
sistemakh dlya povysheniya proizvoditel’'nosti podsistemy vvoda-vyvoda. Pervaya vserossi-
iskaya nauchno-tekhnicheskaya konferentsiya “Raspletinskie chteniya” : sb. tez. dokl. —
Moskva, 2013. — S. 169-170.

JImteparypa

1. Grosso, M. et al. Functional Verification of DMA Controllers - Journal of Electronic Testing;:
Theory and Applications Volume 27 Issue 4, August 2011, Pages 505-516.

2. A K.Kum, M.C.Muxaiiios, B.M.®enpaman. Ilojcucrema BBOja-BbIBOJA JJIsd CUCTEM
wa kpucramie "MICT-4R" wu "Oawbpyc-S" Ha oOCHOBE MHKPOCXEMBI KOHTPOJLIEPA
niepucepuitabx narepdeiicos. — Bompockr pagnosiekrponnku, cepust IBT, Bormyck 3, 2012.

3. I'ypun K.JI., Memkos A.H., Ceprun A.B., fdxymesa M.A. PazsuTne Mo/eIu MOJCUCTEMBI
[TaMSITH BBIYHUC/IATEIBHBIX KOMILJIEKCOB CepuH «DJIBOpyCc». — BOIpOoChl paino3/IeKTPOHUKH,
cepust 9BT, 2010, Boimyck 3.

4. Nohl, A., Braun, G., Schkiebusch, O., Leupers, R., Meyr, H., A Universal Technique for Fast
and Flexible Instruction-Set Architecture Simulation, DAC2002, June 10-14, New Orleans,
Louisiana, USA, 2002.

5. ®poJios I1.B. T'enepanus ciaydaiiHbIX T€CTOB CUCTEMHOTO YPOBHS JJIsi MHKPOIIPOIIECCOPOB C
apXUTEKTYPOil «Dpbpycs». — Bompocs! pamanosnekrponuku, cepus IBT, 2014, Boimyck 3.

6. Ucaes M.B., Ionskos H.JO. Ilpumenenune kama u cupasoaanka DMA-oomenos B NUMA-
cucTeMaxX i TIOBBIMIEHUs TPOM3BOAUTENBHOCTH TOACUCTEMBI BBOJA-BLbIBOMA. llepBas

TPYIABlI MOTU. — 2012. — Tom 4, Ne 1

BCepoCCHiicKasl HayIHO-TexHn4IecKas Kondepennusa ‘Paciierurnckne arenus’ : ¢O. Te3. TOKJI.
— Mocksa, 2013. — C. 169-170.

Hocmynuana 6 pedaxyuro 297

TPYIbBlI MOTU. — 2012. — Tom 4, Ne 1 9

Summaries of All Articles

Frolov P. V., Kutsevol V. N., Kutsevol V. N., Meshkov A. N., Polyakov N. Yu., Ryzhov M.
P.

Direct Memory Access components verification system

A method of direct memory access subsystem verification used for Elbrus series micro-
processors has been described. A peripheral controller imitator has been developed in order
to reduce verification overhead. The model of imitator has been included into the functional
machine simulator. A pseudorandom test generator for verification of the direct memory
access subsystem has been based on the simulator.

Key words: system verification, functional model, direct memory access, pseudorandom
test generation.

10 TPYIBlI MOTU. — 2012. — Tom 4, Ne 1

CBegenusi 06 aBTOpax crareil
(Ha MOMEHT 1o/a4m cTaTbm)

Direct Memory Access components verification system

@posos Masea Buxmoposuy (AO «MIICT», crapmmnii umzkenep-nporpamyuct, [TAO «MTHIVM um. 11.C.
Bpykay», crapmuii unzenep-nporpaMMucrt) opium@mest.ru

Kyueeon Bumasuii Huxoaaesuy (AO «MIICT», murammuit Hayansiii corpyauuk) kutsevol v@mest.ru
Meshkov Aleksey Nikolaevich (x.1.H., AO «MIICT», Hagambauk otnena, ITAO «MTHIYM um. 1.C.
Bpyka», Hauanbauk otiena) alex@mest.ru

Polyakov Nikita Yurievich (AO «MIICT», crapumii unxKkenep-nporpaMmmuct) polyakov n@mcst.ru
Ryzhov Mikhail Petrovich (AO «MIICT», nauanpauk cekropa, ITAO «MTHOYM um. U.C. Bpykas,

HAYAJBHUK CeKTopa) ryzhov@mest.ru

TPYIbBlI MOTU. — 2012. — Tom 4, Ne 1 11

Cchliku Ha onmyOJMKOBaHHBIE CTAThU
(B coorBercrBuu ¢ I'OCT P 7.0.5-2008)

@posos I1.B. Cucrema BepuduKanum KOMIOHEHTOB, 06ECIEYNBAIONINX IPSIMO JIOCTYIL K IaMATH //
Tpyaer MOTU. — 2012. — T. 4, Ne 1. — C. 1-8.

Frolov P.V. Direct Memory Access components verification system // Proceedings of MIPT. —
2012. — V.4, N 1. — P. 1-8.

