
SECURE
COMPUTING

TECHNOLOGY

SECURE COMPUTING TECHNOLOGY
Secure Computing Technology (SCT) is one of
fundamental features of Elbrus architecture,
conceived according to “Secure by Design” principle.
It is a special mode of operation with fine-grained
memory access control — at object-level rather than
page-level — implemented in Elbrus processor
hardware. This technology not only prevents most
common types of security vulnerability exploits,
including the notorious “buffer overflow” attack, but
also helps with debugging software during its
development — thanks to processor hardware
detecting violations and stopping the program the
very same moment it attempts to perform an illegal
memory operation (rather than allowing it to run
further until more memory is corrupted to the point
of utter malfunction with no trace back to the origin
of primal error).

The demand for hardware-enforced control over
software functioning has seen sharp increase during
the last decade. One of the most renowned projects
in this area is CHERI (Capability Hardware Enhanced
RISC Instructions), carried out by University of
Cambridge, UK, with implementations for ARM and
RISC-V architectures. Cybersecurity and
Infrastructure Security Agency of the USA promotes
such technologies as well. Elbrus platform is leading
this trend with its production-grade Secure
Computing implementation.

SECURE
BY DESIGN

HISTORY OF SECURE COMPUTING
Soviet-built Elbrus-1, Elbrus-2 and Elbrus-3 computer
systems had a complete implementation of SCT
(called “Protected Execution Mode” at the time), with
majority of system-level and application-level
software running this way, as well as software
development and debugging — making it fast and
user-friendly for the developers. That led to the A-135

air defense system, covering the Moscow region and
based on Elbrus-2, to be put into service in a
record-breaking timeline. Developed by several
independent teams spread throughout the vast
country, the system contained over 1 million lines of
source code, and it was SCT that made such a
large-scale project a success.

Elbrus-2 computer A-135's Don-2N radar station

CORE ELEMENTS OF SECURE COMPUTING
DESCRIPTORS INSTEAD OF POINTERS
In its regular mode of operation, just like other
processors (x86, ARM, etc.), Elbrus accesses memory
using ordinary addresses — plain numbers represented
by 32- or 64-bit values. From the processor’s point of
view, those numbers are no different from other data
stored in registers or in memory, thus may easily be
manipulated by regular arithmetic instructions, or
transferred to/from arbitrary locations.

When in secure mode, Elbrus uses 128-bit structures,
called descriptors, which combine object’s base
address, current offset and total size. From the
programmer’s point of view, the use of descriptors is
totally transparent in high-level languages, provided
that language standards are adhered, including the use
of established abstractions for data size (such as sizeof
operator) instead of hardcoded values — because each
pointer will consume 128 bits rather than 32 or 64.

REGULAR MODE

address
32 / 64 bits

SECURE MODE

128 bits

offset base address size

HARDWARE-ENFORCED MEMORY TAGGING
For each 64-bit word, Elbrus adds a 4-bit tag —
a shadow value that describes the kind of data stored in
that 64-bit word: an empty (uninitialized) value, general
data, lower or upper half of a descriptor. More precisely,
there are distinct kinds of descriptors — one for data
and one for code; also, an empty value may be tagged
in either lower or upper 32-bit half of 64-bit word.
Competing processors without hardware-enabled

memory tagging may use software emulation, though
that incurs very high performance overhead and
additional memory consumption. Elbrus hardware
provides near-native performance and stores the tags
in extra ECC memory cells (still leaving enough space
for error correction codes), making the Secure
Computing affordable even for production use.

HARDWARE-ENFORCED MEMORY ACCESS CONTROL VIA DESCRIPTORS
In its regular mode of operation, just like other
processors (x86, ARM, etc.), Elbrus authorizes memory
access based on page table solely — providing control
granularity at page scale on per-process basis. When in
secure mode, Elbrus also checks that the requested
memory range is within the bounds of a specific object
(an array, a structure, or a basic field — depending on
what the descriptor holds), providing control granularity
on a byte-wise level within a process. If a descriptor is
supposed to represent code rather than data, Elbrus
checks that it really targets an executable segment, not data.

Upon detecting a violation, Elbrus processor hardware
signals an interrupt to stop the program immediately at
the point of erroneous request. The checks are
performed in constant time before cache memory is
queried, therefore preventing Spectre-class timing
attacks.
Tagging ensures that descriptors can only be created in
a proper fashion and not constructed manually, nor
tampered by modifying an existing descriptor. Hence
the integrity of bounds control is assured.

HARDWARE-ENFORCED DATA INITIALIZATION CONTROL
As long as a word, or its half, is tagged as “empty value”
(by default), the processor may load it into register but
will refuse to store the result of any attempted

operation. Once a meaningful content is written, the
tag is adjusted accordingly.

COMPILER, KERNEL AND SYSTEM LIBRARIES SUPPORT
As of now, SCT is available for Linux user-space
applications: both the kernel and system libraries
support the use of 128-bit descriptors as an alternative
to regular 32- and 64-bit mode addressing (more

precisely, it is a multi-lib solution with distinct binaries
for each variant). There is also syscall translation layer
provided which performs additional validation of input
parameters passed to kernel.

LD/ST
read / write

allowed by page table

64 TLB

denied by page table
interrupt

REGULAR MODE

read / write

allowed by page table

TLB

denied by page table
interrupt

LD/ST

within range

A-L

A-H
Bounds check

bounds violated
interrupt

other tag, or write

Empty check

“empty” tag on read
interrupt

tags are valid

Tag check

pattern mismatch
interrupt

SECURE MODE

Options for tagging a 64-bit word

data tag

lower or upper half
of code descriptor

*tag codes are fictional

Completely or partially
“empty” data

Initialized data

general data

lower or upper half
of data descriptor

0001E D

0100D E

0000E

464

464

464

464

464

464

0101D

1000A-L

1001A-H

1100P-L

1101P-H

phone:
fax:
e-mail:

«MCST»:

© 2023
www.mcst.ru

117437, Moscow, Profsoyuznaya str, 108
+7 (495) 363-96-65
+7 (495) 363-95-99
mcst@mcst.ru

Sales:

Press:

+7 (495) 797-81-91
sales@mcst.ru

marketing@mcst.ru

Support:

Vacancy:

+7 (495) 796-94-51
support@mcst.ru

resume@mcst.ru

ADOPTION CHALLENGES
As of now, only a limited (although sufficient for
many applications) set of system libraries and utility
programs has been ported to SCT. The major
challenges for porting are:

 hardware-dependent programming techniques
(explicit and implicit assumptions about pointer size,
bit-wise logical operations on pointers as if they were
ordinary numbers, type-casting of pointers to
numbers and back to pointers) that need to be
recognized and rewritten in hardware-agnostic way;
 programming errors (such as the use of
uninitialized data) that need to be identified and fixed.

MCST leads its ongoing initiative to make more
software available for Secure Computing, and opens
a collaborative platform for this task.
Worth to note is that the advantages of SCT come at
a price — as more memory and registers are spent
for storing-128 bit descriptors, and time is spent for
tagging memory as “empty” by default. The
performance hit is 10–20 % on average, which may
usually be considered insignificant, though.

SECURE COMPUTING OBJECTIVES
Detection of most common programming errors:

buffer overflow (ex.: CWE-119 … CWE-122),
use of uninitialized data (ex.: CWE-457),
use after free (ex.: CWE-416).

Prevention of side-channel information leaks
(ex.: Spectre).
Isolation of address space at object level that is more
efficient than process- and page-level isolation.

SIMILAR TECHNOLOGIES
Secure Computing Technology was implemented in every generation of Elbrus computers,
starting with Elbrus-1 in 1973, and was unique in its class for quite a long time. The closest
counterpart nowadays is CHERI project run by a research team in Cambridge since 2010
and supported by major chipmakers.

VALUE FOR IT INFRASTRUCTURE SAFETY
AND ROBUSTNESS
Information system security depends on the quality
of its program code. According to a study conducted
by ARM, around 70 % of discovered vulnerabilities are
memory-related. Programming languages with
automatic memory management, like Java and .NET,
are safe from this but not suitable for many use
cases, so unsafe C and C++ forming the foundation of
Linux ecosystem will still remain paramount in
foreseeable future.
Static and dynamic code analysis and certification
software tools have their limitations. Therefore, the
only reliable remedy is hardware-enforced security.
That fact is pointed out in a recent research report
published by US Cybersecurity and Infrastructure
Security Agency, which recommends using “Secure
by Design” approach in general and CHERI as a
particular example.

Secure Computing Technology implemented in
Elbrus processors is a well-established combination
of hardware capabilities and corresponding software
stack, already used in production. Its broader
adoption could lower the security risks significantly,
as well as make software development more
efficient. While alternative solutions may require
considerable efforts and expenses, Secure
Computing Technology is the answer to vital and
pressing issues of IT sustainability.

RUSSIAN VERSION
OF THIS DOCUMENT

